

Ørsted develops energy systems that are green, independent and economically viable

Offshore

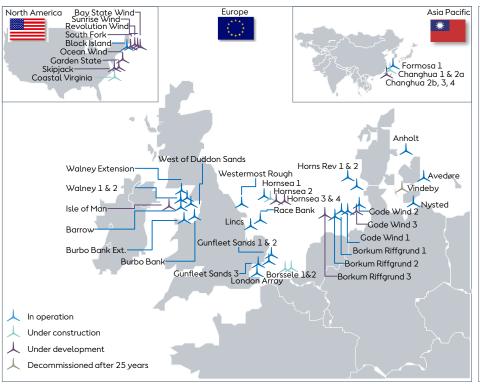
- Global market leader in offshore wind
- Develops, constructs, owns and operates offshore wind farms
- Renewable storage and hydrogen projects in electrolysis and Power2X technologies

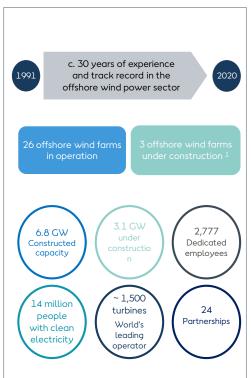
Onshore

- Develops, constructs, owns and operate onshore wind, solar and energy storage projects
- 1.6 GW onshore operational capacity
- 0.8 GW under construction and pipeline to reach 5GW by 2025

Markets & Bioenergy

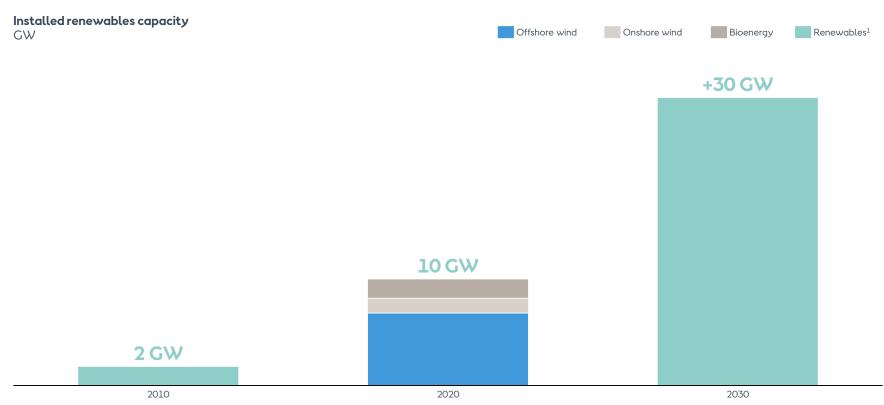
- Heat and power plants converted from coal and gas to biomass and waste-to-energy
- #1 in Danish heat and power generation with 25% of market
- Energy supply solutions for B2B customers

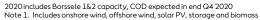




Global market leader in offshore wind

Ørsted offshore wind global footprint


Unparalleled experience and track record



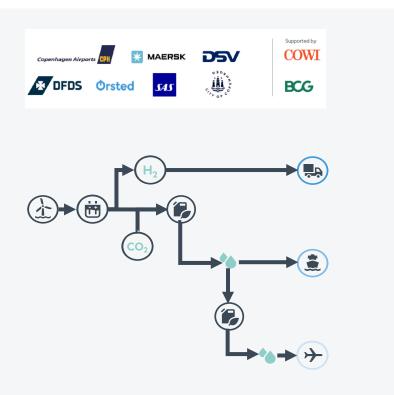
Ørsted green growth ambition for 2030

Ørsted is working on a number of hydrogen projects

- H2RES: 2 MW / EUDP: DKK 34.6m / RES-H₂ for buses / Ørsted, Everfuel, Nel, GreenHydrogen, DSV Panalpina, Hydrogen Denmark, Energinet
- Green Fuels for Denmark: 1.3 GW / tbd / RES e-fuels for heavy road transport, shipping, and aviation / Copenhagen Airports, Mærsk, DSV, DFDS, Ørsted, SAS, Københavns Kommune (+ BCG, COWI)
- Other PtX+CCUS projects under development across Ørsted's Danish biomass assets

 Reallabor Westküste 100: 30 MW / Reallabor: € 30m / RES-H₂ for Heide Refinery / Heide Refinery, EDF Deutschland, Holcim Deutschland, Open Grid Europe, Stadtwerke Heide, thyssenkrupp Industrial Solutions, Ørsted

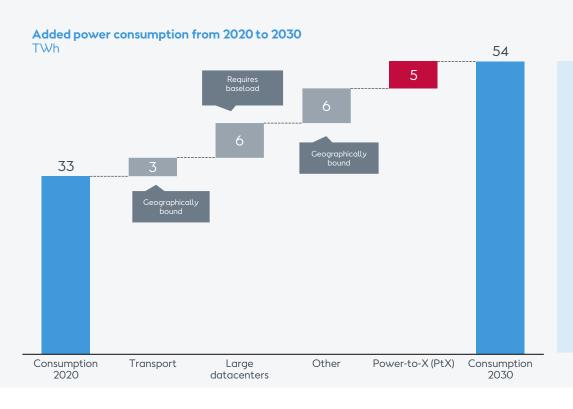
- Sluiskil project: 100 MW / tbd / RES-H₂ for ammonia plant / Yara, Ørsted
- ISPT: Cross-industry Institute for Sustainable Process Technology (ISPT) gigawatt study



- Gigastack: - / BEIS: Phase $2 \pm 7.5 \mathrm{m}$ / Feasibility study / ITM, Element Energy, \emptyset rsted

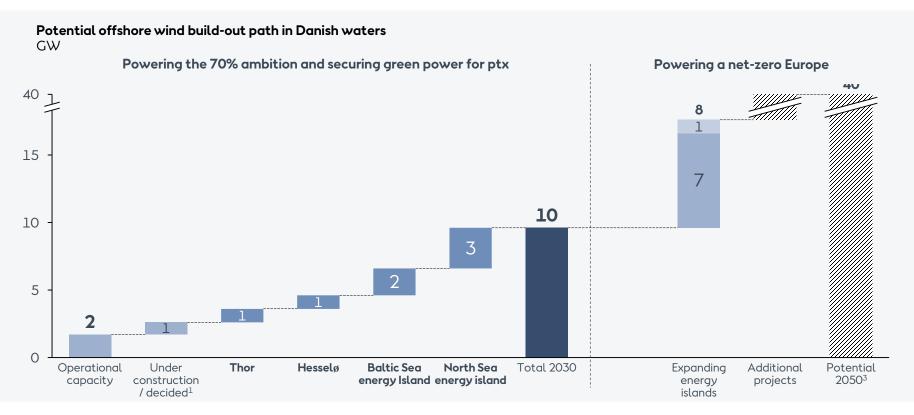
Green Fuels for Denmark: a Partnership for a groundbreaking PtX project

	Timing (est.)	Capacity (akkum.)	
Phase 1: Develop hydrogen production	2023	~10 MW	
Phase 2: Introduce carbon to produce fuels for shipping and aviation	2027	~240 MW	
Phase 3: Scale through aviation	2030	~1.3 GW	



Politically agreed offshore wind will provide the opportunity to supply renewable electricity to power-to-X

The build-out of electrolysers can go hand-in-hand with offshore wind build out and ease the integration challenge



Electrolysers go hand-in-hand with offshore wind

- New consumption that needs to be placed somewhere
- Responsive to electricity prices
- No seasonal variation
- Storability

If we get it right, it is possible for offshore wind to serve the Danish and European demand

^{1:} Includes Kriegers Flak and near-shore projects

^{2: 1}GW additional Baltic Sea, 7GW North Sea

Thank you

